Molecular mechanisms creating bistable switches at cell cycle transitions

نویسندگان

  • Anael Verdugo
  • P. K. Vinod
  • John J. Tyson
  • Bela Novak
چکیده

Progression through the eukaryotic cell cycle is characterized by specific transitions, where cells move irreversibly from stage i-1 of the cycle into stage i. These irreversible cell cycle transitions are regulated by underlying bistable switches, which share some common features. An inhibitory protein stalls progression, and an activatory protein promotes progression. The inhibitor and activator are locked in a double-negative feedback loop, creating a one-way toggle switch that guarantees an irreversible commitment to move forward through the cell cycle, and it opposes regression from stage i to stage i-1. In many cases, the activator is an enzyme that modifies the inhibitor in multiple steps, whereas the hypo-modified inhibitor binds strongly to the activator and resists its enzymatic activity. These interactions are the basis of a reaction motif that provides a simple and generic account of many characteristic properties of cell cycle transitions. To demonstrate this assertion, we apply the motif in detail to the G1/S transition in budding yeast and to the mitotic checkpoint in mammalian cells. Variations of the motif might support irreversible cellular decision-making in other contexts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell cycle commitment in budding yeast emerges from the cooperation of multiple bistable switches

The start-transition (START) in the G1 phase marks the point in the cell cycle at which a yeast cell initiates a new round of cell division. Once made, this decision is irreversible and the cell is committed to progressing through the entire cell cycle, irrespective of arrest signals such as pheromone. How commitment emerges from the underlying molecular interaction network is poorly understood...

متن کامل

Experimental testing of a new integrated model of the budding yeast Start transition.

The cell cycle is composed of bistable molecular switches that govern the transitions between gap phases (G1 and G2) and the phases in which DNA is replicated (S) and partitioned between daughter cells (M). Many molecular details of the budding yeast G1-S transition (Start) have been elucidated in recent years, especially with regard to its switch-like behavior due to positive feedback mechanis...

متن کامل

Linking fast and slow positive feedback loops creates an optimal bistable switch in cell signaling.

Interlinked positive feedback loops are frequently found in biological signaling pathways. It is intriguing to study the dynamics, functions, and robustness of these motifs. Using numerical simulations and theoretical analysis, here we explore the sensitiveness and robustness of positive feedback loops with various time scales. Both single and dual loops can behave as a bistable switch. We stud...

متن کامل

Revisiting the Lissajous figure as a tool to study bistable perception

During bistable vision perception spontaneously "switches" between two mutually exclusive percepts despite constant sensory input. The endogenous nature of these perceptual transitions has motivated extensive research aimed at the underlying mechanisms, since spontaneous perceptual transitions of bistable stimuli should in principle allow for a dissociation of processes related to sensory stimu...

متن کامل

The topology design principles that determine the spatiotemporal dynamics of G-protein cascades.

Small monomeric G-proteins control cellular behavior, cycling between inactive GDP-bound and active GTP-bound states. Activating and deactivating transitions are regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), respectively. G-proteins can control different GEF and GAP activities, thereby creating GTPase signaling cascades. Here, we characterize all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013